

Two loudspeakers emit sound waves along the x-axis. The intensity of sound is maximum when the speakers are 25-cm apart. The intensity of sound decreases as the distance between the speakers is increased and reaches zero at a separation of 45-cm.

- Determine the wavelength of the sound waves?
- The distance between the speakers is increased further. At what separation will the sound intensity again be a maximum?

Given:

Distance between loudspeakers for maximum sound intensity $d_{\max} = 0.25 \text{ m}$

Distance between loudspeakers for minimum sound intensity $d_{\min} = 0.45 \text{ m}$

Determine:

- Wavelength of sound waves: λ

(i) When sound intensity is maximum, the waves from the two loudspeakers are in constructive interference. Constructive interference happens when the path length difference travelled by the two waves is $n\lambda$, where $n = 0, 1, 2, 3, \dots$

$$d_{\max} = n\lambda \quad \dots \quad (1)$$

(ii) When sound intensity is minimum, the waves from the two loudspeakers are in destructive interference. Destructive interference happens when the path length difference travelled by the two waves is $(n + \frac{1}{2})\lambda$, where $n = 0, 1, 2, 3, \dots$

$$d_{\min} = (n + \frac{1}{2})\lambda \quad \dots \quad (2)$$

When $d_{\max} = 0.25 \text{ m}$, the sound intensity is maximum. When distance is increased by $\lambda/2$, to $d_{\min} = 0.45 \text{ m}$, the sound intensity falls to zero.

From (1) & (2):

$$\Delta d = d_{\max} - d_{\min} = 0.45 - 0.25 = 0.20 \text{ m}$$

Also, from (1) & (2):

$$\Delta d = \lambda/2 \text{ --- (3)}$$

Substituting for Δd in (3):

$$\lambda = 2 \times \Delta d = 2 \times 0.2 = 0.4 \text{ m} = 40 \text{ cm}$$

b) Distance between speakers when sound intensity is maximum again: d'_{\max}

For intensity of the sound to be maximum again, path length difference has to be $(n+1)\lambda = (n+1/2)\lambda + \lambda/2$

Then

$$d'_{\max} = d_{\min} + \lambda / 2 = 0.45 + (0.4 / 2) = 0.65 \text{ m} = 65 \text{ cm}$$