

The length of a straight steel rod is 2.0 cm. Upon heating, the temperature of the rod changes from 25 °C to 45 °C. What is the change in the length of the rod?

Given:

Initial length of the rod: $l = 2.0 \text{ cm}$

Initial temperature of rod: $T_i = 25^\circ\text{C} = 298 \text{ K}$

Final temperature of rod: $T_f = 45^\circ\text{C} = 318 \text{ K}$

To determine: change in length of the rod: Δl

Use formula:

$$\Delta l = \alpha \times l \times \Delta T \text{ ----- (1)}$$

The constant α is the coefficient of linear expansion. Its value depends on the material the rod is made of.

For steel: $\alpha = 12 \times 10^{-6} \text{ K}^{-1}$

Substituting α , l & ΔT in (1):

$$\Delta l = 12 \times 10^{-6} \times 2.0 \times (318 - 298) = 0.00048 \text{ cm}$$