

An air-track glider is attached to a spring. At time $t = 0\text{-s}$, the glider is pulled to the right and released from rest. Then the time period of oscillation is determined to be 3.0-s and a maximum speed is determined to be of 35 cm/s .

- Calculate is the amplitude of the oscillation?
- Calculate is the glider's position at $t = 0.25\text{ s}$?

Given:

Time period of oscillation:

$$T = 3.0\text{-s}$$

Maximum speed of oscillation:

$$v_{\max} = 35\text{ cm/s} = 0.35\text{ m/s}$$

Determine:

- Amplitude of oscillation: A

Use formula:

$$v_{\max} = \omega A \quad \dots \dots \dots \quad (1)$$

“ ω ” is the angular velocity of the oscillation in rad/s . It is calculated as $2\pi / T$.

Rearranging (1) & substituting for v_{\max} & T in (1):

$$A = v_{\max} \times (T / 2\pi) = (0.35) \times [3.0 / (2 \times 3.14)] = 0.17\text{ m} = 17\text{ cm}$$

- Glider's position at $t = 0.25\text{-s}$: $x_{0.25}$

Use formula:

$$x_{0.25} = A [\cos (\omega t)] = A [\cos \{ (2\pi / T) \times t \}] \quad \dots \dots \dots \quad (2)$$

Substituting for A , T and t in (2):

$$x_{0.25} = 0.17 \times [\cos \{ (2 \times 3.14 / 3.0) \times 0.25 \}] = 0.15\text{ m} = 15\text{ cm}$$