

A cylinder contains 1.5 g of He gas at a pressure of 8 atm. How much heat is needed for a temperature increase of 150°C at constant volume.

Given:

Mass of He:

$m = 1.5\text{ g}$

Pressure of He:

$P = 8\text{ atm}$

Increase in temperature of He:

$\Delta T = 150^{\circ}\text{C}$

To determine: Heat required to increase temperature at constant volume: Q

Use formula:

$$Q = nC_v\Delta T \text{ ----- (1)}$$

C_v is the molar specific heat of gas at constant volume.

Its value is $12.5\text{ J/mol.}^{\circ}\text{C}$ for Helium gas.

“n” is the number of moles in the given mass of gas.

Number of moles in 1.5 g of Helium : $n = 0.37$ moles

Substituting for n , C_v & ΔT in (1):

$$Q = 0.37 \times 12.5 \times 150 = 694\text{ J}$$