

A 2.0-cm-diameter pipe widens to 3.0 cm. Speed of liquid in the first segment is 6.0 m/s.

- (a) What is the speed of liquid in the second segment?
- (b) Determine the volume flow rate through the pipe?

Given:

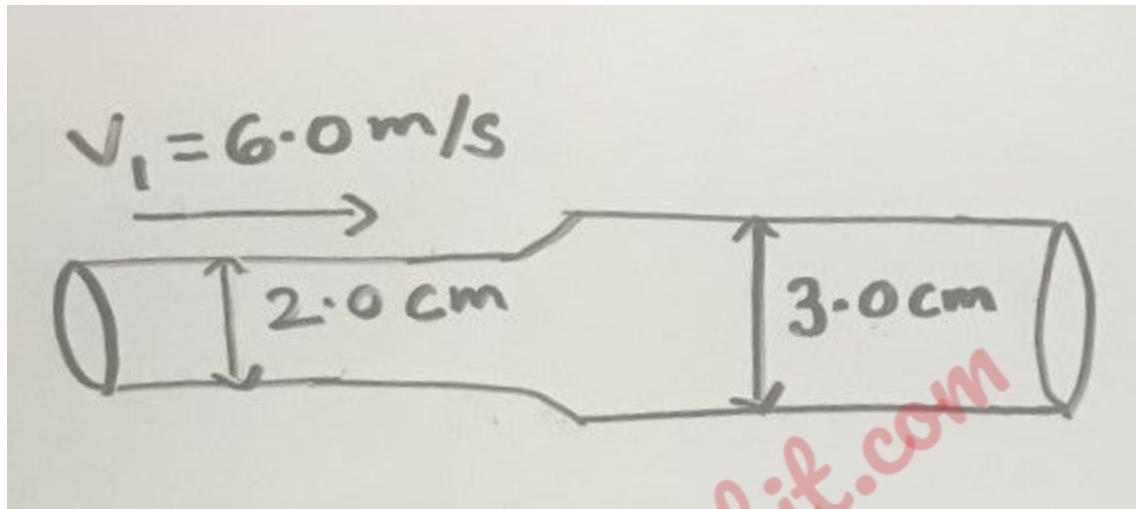
Diameter of first segment of pipe:

$$d_1 = 2.0 \text{ cm} = 0.02 \text{ m}$$

Radius of first segment of pipe:

$$r_1 = 1.0 \text{ cm} = 0.01 \text{ m}$$

Diameter of second segment of pipe:


$$d_2 = 3.0 \text{ cm} = 0.03 \text{ m}$$

Radius of second segment of pipe:

$$r_2 = 1.5 \text{ cm} = 0.015 \text{ m}$$

Speed of liquid in the first segment:

$$v_1 = 6.0 \text{ m/s}$$

(a) Determine: speed of liquid in the second segment of pipe: v_2

Since volume rate of flow of liquid ($Q = Av$) is a constant throughout the flow in the pipe, use formula:

$$A_1 v_1 = A_2 v_2 \dots \dots \dots (1)$$

A is the area of cross-section of the pipe and v is the speed of the liquid.

Equation (1) is called the “Equation of Continuity”.

Area of cross-section of pipe is:

$$A = \pi r^2$$

Substituting for A_1 and A_2 in (1):

$$\pi r_1^2 \times v_1 = \pi r_2^2 \times v_2 \dots \dots \dots (2)$$

Rearranging & simplifying (2) and substituting for r_1 , r_2 and v_1 in (2):

$$v_2 = (0.01^2 \times 6.0) / (0.015^2) = 2.7 \text{ m/s}$$

(b) Determine: Volume flow rate: Q

Use formula:

$$Q = A_1 v_1 = \pi r_1^2 \times v_1 \dots \dots \dots (3)$$

Substituting for r_1 & v_1 in (3):

$$Q = A_1 v_1 = 3.14 \times 0.01^2 \times 6.0 = 1.9 \times 10^{-3} \text{ m}^3 / \text{s}$$

(Alternatively, $Q = A_2 v_2$, can also be used to determine the volume flow rate.)