

A diver initially jumping off a diving board with his body almost straight has a moment of inertia of 15.9 kgm^2 and makes 0.7 rev/s in this position. He then tucks his body into a somersault position. His moment of inertia in the tucked position is 4.1 kgm^2 . What is the diver's angular frequency in this position?

Given:

$$\text{Moment of inertia of diver in straight position: } I_s = 15.9 \text{ kgm}^2$$

$$\text{Angular frequency of diver in straight position: } f_s = 0.7 \text{ rev / s}$$

$$\text{Moment of inertia of diver in tuck position: } I_t = 4.1 \text{ kgm}^2$$

Determine: angular frequency of diver in tuck position: f_t

Use the law of conservation of angular momentum: when **no** external torque acts on an object, there is **no** change in the angular momentum of the object.

Then:

$$L_s = L_t \text{ ----- (1)}$$

But:

$$L_s = I_s \omega_s$$

$$L_t = I_t \omega_t$$

Substituting for L_s and L_t in (1):

$$I_s \omega_s = I_t \omega_t \text{ ----- (2)}$$

Also: $\omega = 2\pi f$

Substituting for I_s , ω_s , and I_t in (2):

$$15.9 \times (2\pi) \times 0.7 = 4.1 \times (2\pi) \times f_t \text{ ----- (3)}$$

Rearranging & simplifying (3):

$$f_t = (15.9 \times 0.7) / 4.1 = 2.71 \text{ rev / s}$$