

A block has a mass of 4 kg. It is displaced 6m on a frictionless, horizontal surface by a constant applied force of magnitude 20 N directed parallel to the horizontal direction as shown in figure below.

a) What is the work done on the block by the applied force?

Given:

Mass of the block:

$$m = 4 \text{ kg}$$

Magnitude of horizontal force:

$$F = 20 \text{ N}$$

Distance moved by the object:

$$d = 6 \text{ m}$$

Angle between applied force and displacement:

$$\theta = 0^\circ$$

Determine: work done by applied force: W

Use formula:

$$W = \mathbf{F} \cdot \mathbf{d} = F \times d \times (\cos\theta) \quad (1)$$

($\mathbf{F} \cdot \mathbf{d}$ is the scalar product of force vector \mathbf{F} and displacement vector \mathbf{d})

Substituting for F , d and θ in (1):

$$W = 20 \times 6 \times (\cos 0^\circ) = 120 \text{ J}$$

b) What is the work done on the block by the normal force?

Use formula:

$$W = \mathbf{F}_N \cdot \mathbf{d} = F_N \times d \times (\cos\theta) \text{ ----- (2)}$$

Angle between the normal force vector and displacement vector is 90° .

Then:

$$W = F_N \times d \times (\cos 90^\circ) = F_N \times d \times (0) = 0 \text{ J}$$

c) What is the work done on the block by the gravitational force?

Use formula:

$$W = \mathbf{F}_g \cdot \mathbf{d} = m \times g \times d \times (\cos\theta) \text{ ----- (3)}$$

Angle between the gravitational force vector and displacement vector is 90° .

Then:

$$W = m \times g \times d \times (\cos 90^\circ) = m \times g \times d \times (0) = 0 \text{ J}$$