

A ball is thrown straight upwards from the ground and reaches a maximum height of 10m before it falls back to the ground.

Calculate the total time taken by the ball to rise to maximum height and fall back to the ground.

$v_f = 0 \text{ m/s}$
at maximum
height h_{\max}

Given:

Maximum height reached by ball: $h_{\max} = 10\text{m}$

Acceleration in this case is acceleration due to gravity acting in the downward direction, $g = -9.8\text{m/s}^2$

Velocity vector and acceleration vector oppose each other. So the ball keeps slowing down and reaches a velocity of 0 m/s at maximum height and then reverses direction and starts to fall to the ground.

Final velocity at maximum height of the ball is $v_f = 0$ m/s

Determine: total time taken by ball to rise up to maximum height and fall back to the ground: Δt

$$\Delta t = \Delta t_1 + \Delta t_2$$

Δt_1 is time taken by ball to rise up from the ground to the maximum height.

Δt_2 is the time taken by ball to fall from maximum height to the ground.

To find Δt_1 , use equation of motion:

$$v_f = v_i + g(\Delta t_1) \text{ ----- (1)}$$

v_i is unknown. To find v_i , use equation of motion:

$$v_f^2 = v_i^2 + 2gh_{\max} \text{ ----- (2)}$$

Substituting for v_f , g and h in (2):

$$0^2 = v_i^2 + 2(-9.8)(10)$$

$$-v_i^2 = 2(-9.8)(10)$$

$$v_i = 14 \text{ m/s}$$

Substituting for v_i , v_f and g in (1)

$$0 = 14 + (-9.8)(\Delta t_1)$$

$$\Delta t_1 = -14 / -9.8 = 1.43 \text{ s}$$

Time taken to come down from a given height is the same as the time taken to reach the same height under the influence of gravity .

$$\text{So } \Delta t_1 = \Delta t_2$$

Then total time taken by the ball to rise up from ground to maximum height and fall back to the ground from this height is:

$$\Delta t = \Delta t_1 + \Delta t_2$$

$$\Delta t = 1.43 + 1.43 = 2.9 \text{ s}$$