

A 20 kg mass is attached to a string that has a breaking strength of 250 N. The mass is whirled in a horizontal circle of radius 100-m. What is the maximum speed at which the object can rotate without breaking the string?

Given:

$$\text{Mass of object: } m = 20 \text{ kg}$$

$$\text{Maximum tension allowed on string: } T = 250 \text{ N}$$

$$\text{Radius of circular path: } r = 100 \text{ m}$$

Determine

Maximum speed allowed to keep object in the circular path: v_{\max}

The tension T on the string provides the centripetal force required to keep the object in the circular path. Centripetal force is “ mv^2 / r ” and acts towards the center of the circular path.

$$T = m(v_{\max})^2 / r \text{ ----- (1)}$$

Rearranging (1) & substituting for “ T ”, “ r ” and “ m ” in (1):

$$v_{\max} = (Tr / m)^{1/2} = (250 \times 100 / 20)^{1/2} = 35.3 \text{ m/s}$$