

A heat engine is operating between energy reservoirs at 25°C and 700°C . It is functioning at an efficiency that is 35% of its maximum possible efficiency. If the work output of the heat engine is 1500 J, how much energy is

- (a) extracted from the hot reservoir?
- (b) how much energy is exhausted into the cold reservoir?

Given:

Temperature of cold reservoir:

$$T_C = 25^{\circ}\text{C} = 298 \text{ K}$$

Temperature of hot reservoir;

$$T_H = 700^{\circ}\text{C} = 973 \text{ K}$$

Efficiency at which the heat engine is operating:

$$e = 35\% \text{ of } e_{\max}$$

Work output of heat engine:

$$W = 1500 \text{ J}$$

Determine:

- (a) Energy extracted from the hot reservoir: Q_H
- (b) Energy exhausted into the cold reservoir: Q_C

First, the maximum possible efficiency of the heat engine has to be determined. Use formula:

$$e_{\max} = 1 - (T_C / T_H) \text{ ----- (1)}$$

Substituting for T_C & T_H in (1):

$$e_{\max} = 1 - (298 / 973) = 0.69 = 69\%$$

Since the efficiency of the heat engine is at 35% of e_{\max} :

$$e = 0.35 \times e_{\max} \text{ ----- (2)}$$

Substituting for e_{\max} in (2):

$$e = 0.35 \times 0.69 = 0.24 = 24\%$$

(a) Energy extracted from the hot reservoir: Q_H

Use formula:

$$e = W / Q_H \text{ ----- (3)}$$

Rearranging (3) and substituting for W & e in (3):

$$Q_H = W / e = 1500 / 0.24 = 6,250 \text{ J}$$

(b) Energy exhausted into the cold reservoir: Q_C

Use formula;

$$W = Q_H - Q_C \text{ ----- (4)}$$

Rearranging (4) and substituting for W & Q_H in (4):

$$Q_C = Q_H - W = 6250 - 1500 = 4,750 \text{ J}$$